

LA-UR-21-24699

Approved for public release; distribution is unlimited.

Title: Overview of LANL's Applied Acoustics Lab

Author(s): Pantea, Cristian

Intended for: Acoustics Seminar Series - a summer event to foster future

collaborations with Universities

Issued: 2021-05-14

Overview of LANL's Applied Acoustics Lab

Cristian Pantea
Applied Acoustics Lab
Materials Physics and Applications, MPA-11

Acoustics Seminar Series ~online~

LA-UR-21-XXXXX

Applied Acoustics Team

Cristian Pantea

Team Leader

Vamshi Chillara

Research Scientist

Electric Imp Spectr

Chevron)

Well Integrity Monitoring

CO₂ sequestration (DOE)

µarchitected Waveguides (LDRD-ECR)

John Greenhall

http://www.lanl.gov/orgs/mpa/mpa11/AcousticsAndSensorsTeam

Research Scientist
Machine Learning
3DHEAT
Defects Thermoel Wafers
NDE weapons components
Electronics design

Craig Chavez

Research Technologist

Mechanical and Electronics

Design, and System Configuration

Eric Davis

Postdoc
Well Integrity Monitoring
CO₂ sequestration (DOE)
D₂O content in heavy water
3DHEAT

Acoustic Monitoring of Pu NDE of weapons components

Hung Doan

Postdoc
Corn stover acoustics sensor
Well Integrity Monitoring

Dipen Sinha

Visiting Scientist
Defects Thermoel Wafers
Welding inspection
NDE of weapons components
Electronics design

Christopher Hakoda

Postdoc µarchitected Waveguides Well Integrity Monitoring

Milo Prisbrey

Postdoc
Machine Learning
Acoustic manipulation
Waveform inversion
*Joint w/ CCS-7

Alan Graham

Research Associate

Defects detection in wafers

Welding inspection

NDE of weapons components

Pavel Vakhlamov

Post-Master
Mechanical and Electronics
Design, and System
Configuration

Sincheng Huang

Grad Student
Instrumentation development
LabView programming
D₂O content in heavy water

Our research - Applied Acoustics

Development of instrumentation, methods and sensors with a focus on difficult and challenging conditions (high pressure, high temperature, corrosive media, radiation, etc.)

Sensing

Manipulation with sound

Applied Acoustics Lab

Capabilities

Elastic properties determination

Observe mechanical resonances of objects to determine physical properties of fluids and elastic properties of materials

Acoustic weld defect detection

 Weld detection in dense materials (Ta) challenging for radiography

Solution: scanning acoustic microscopy

"Smart" Transfer Chutes with In-line Acoustic Sensors for Bulk-Solids Handling Solutions

• Objective: Develop innovative solids handling equipment (1) and unique in-line acoustic measurement sensors (2, 3) that improve operational reliability, safety, throughput, and yield of biorefineries.

Current limitations

- moisture sensing: cost, durability, complexity, reliability, sampling volume, and continuous monitoring.
- no known commercial sensors for real-time monitoring of plug-screw feeder wear
- no commercial chutes with the ability to change configuration to discard problematic feedstock.

Wear Sensor Real and simulated augers

Simulated vibration spectrum

Moisture Sensor (corn stover)

Concentration of Particles in a Tube

Sound field is turned ON and OFF.

Piezoelectric Transducer @ 1.5 MHz

600 μm capillary, Flow~ 200 μL/min 20 μm polystyrene beads

Real Time Video

Biological cell analysis

Acoustic Flow Cytometer

Thermo Fisher Scientific

Acoustic Separation of Humidified Air

The video (real-time) shows the separation of mist from humidified air and concentrating the mist acoustically inside a hollow cylinder using sound. Once the mist is concentrated, It can be taken out of the system. Various types of implementation are possible and this is simply a proof-of-concept to show what is possible with sound.

IPV – targeted excitation of lungs

- Intrapulmonary percussive ventilation (IPV): Applies periodic bursts of air/aerosolized medication down the trachea to improve air absorption and mucus clearance
- Currently, no good understanding of optimal parameters (frequency)
- We simulate how frequency affects sound penetration in lung bronchi

Funded by DOE Office of Science through the CARES Act (the Coronavirus Aid, Relief, and Economic Security Act)

IPV – targeted excitation of lungs

 Proof-of-principle: use vibrations to improve mucus clearance from a channel

Acoustic Separation

Non-invasive mechanical separation of any two-phase system (e.g., liquid-liquid, liquid-solid, gas-liquid, etc.,) using sound

Liquid-Liquid Solid-Liquid

Acoustic manipulation

Manipulation of gas bubbles, liquid droplets, and solid particles with sound

Ultrasonic foam mitigation

Particles/bubbles suspended in the liquid, will be moved to the nodes/antinodes of the standing waves by the **Acoustic Radiation Force**

Outcome of attracting bubbles

Underwater manipulation with sound

Heavy Water Production Monitoring

A New Challenge for the IAEA

Arak Heavy Water Production Facility Girdler sulfide process + distillation

We can measure accurate and precise sound speed, to the first decimal point

→ high precision/accuracy for D₂O concentration, ~ 0.1%

Nuclear materials identification

 RUS - a nondestructive, very difficult to spoof, well-tested measurement method.

Good correlation between the elastic moduli and density for samples of different compositions/origins.

Able to identify nuclear material composition, fabrication method and source by measuring its RUS properties.

3DHEAT (3 dimensional high explosive acoustic temperature)

Acoustics diagnosis of thermal damage in Pentolite

Machine learning, CNN (convolutional neural network)

Thank you

IMG_5260_Edited.jpg

IMG_5268_Edited.jpg

IMG_5274_Edited.jpg

IMG_5269_Edited.jpg

IMG_5264JPG

IMG_5276_Edited.jpg

IMG_5265JPG

IMG_5266_Edited.jpg

IMG_5278JPG

IMG_5267_Edited.jpg

IMG_5279_Edited.jpg

